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1 Introduction

In the sociological literature [3, 15, 28, 34, 42], panic is considered as a sudden terror which
dominates or replaces thinking. Both animals and humans are vulnerable to panic. Panic
is infectious, in the sense that one individual’s panic may easily spread to other members
of the group nearby and soon to the entire group. It typically occurs in disaster or violent
situations. It is believed to originate from biological responses in the brains and endocrine
systems, for instance in the case of herd animals as the response to predators. Often, a
large stampede eliminates everything along its path, possibly including some individuals
of the escaping group, too. Deaths from stampedes occur primarily from compressive
asphyxiation, and usually not from trampling. These accidents are referred to as crowd
crushes. At the individual level, warning signs of an incumbent crowd crush include the
rise of density to roughly more than four people per square meter.

Since decades, the needs of emergency services and armed forces around the world
have been posing several requests to engineers, architects, sociologists, . . . aiming at the
prevention or, at least, at a rational management of panic. We recall that the worst
recorded stampede in history took place in Chongqing, China, during World War II. A
bombing of the city on June 6th, 1941, triggered mass panic in an air raid shelter, killing
approximately 4,000 people, most of them by suffocation, see [35] for an analysis of the
post–traumatic responses to aerial bombing. In the prevention of these tragedies, desing
and planning have an essential role.

At the design and planning levels, engineers and architects try to prevent the possible
rise of panic, usually by preventing congestion locations and determining the most efficient
escape routes. In fact, pedestrians evacuating a closed space accumulate near to door
exits. The rise of panic may create a dramatic fall in the overall people outflow. The
most effective methods adopted to speed up the evacuation of a large room are often
nonintuitive. For instance, a tall column placed in front of the door exit, may be helpful,
as the obstacle reduces the inter–pedestrian pressure in front of the door, decreasing the
magnitude of clogging and making the overall outflow higher and more regular. This is
known as the Braess’ paradox for pedestrian flows. Optimal management problems about
the shape and the position of such obstacle are crucial issues, but still not completely
clear and still under investigation.

Modern developments may help prevent some of the approximately two thousand
deaths that annually occur in accidents owing to crowding. In Table 1 we give a non–
exhaustive survey of the main crowd accidents. Human stampedes most often occur during
religious pilgrimages, professional sporting and music events. They also often occur in
times of mass panic, as a result of a fire or explosion, as people try to get away.

The increasing interest for pedestrian flows is testified by the growing number of
papers published in international journals. In Figure 1, it is represented a non–exhaustive
survey of the number of papers having in the title the word “pedestrian” and published in
Elsevier or Springer journals versus year. Often, these models are of a microscopic nature,
i.e. they postulate some rules for the behavior of each individual and then consider many
individuals, as in [16, 18, 19, 21, 22, 25, 33, 36, 37, 38, 41]. Fewer articles develop
continuum, or macroscopic, models, where pedestrians are treated in an aggregate way
and detailed interactions are overlooked, as for instance in [1, 2, 11, 13, 23, 24, 29, 40].
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YEAR DEAD CITY NATION YEAR DEAD CITY NATION

1872 19 Ostrów Wielkopolski Poland 1999 53 Minsk Belarus
1876 278 Brooklyn USA 2001 43 Henderson USA
1883 12 Brooklyn USA 2001 126 Accra Ghana
1883 180 Sunderland England 2001 7 Sofia Bulgaria
1896 1,389 Moscow Russia 2003 21 Chicago USA
1908 16 Barnsley England 2003 100 West Warwick USA
1913 73 Michigan USA 2004 194 Buenos Aires Argentina
1943 173 London England 2004 251 Mecca Saudi Arabia
1956 124 Yahiko Japan 2005 300 Wai India
1971 66 Glasgow England 2005 265 Maharashtra India
1979 11 Cincinnati USA 2005 1,000 Baghdad Iraq
1982 66 Luzhniki Russia 2006 345 Mecca Saudi Arabia
1985 39 Brussels Belgium 2006 74 Pasig City Philippines
1989 96 Sheffield England 2006 51 Ibb Yemen
1990 1426 Al-Mu’aysam Saudi Arabia 2007 12 Chililabombwe Zambia
1991 40 Orkney South Africa 2008 12 Mexico City Mexico
1993 21 Hong Kong Cina 2008 23 Omdurman Sudan
1993 73 Madison USA 2008 147 Jodhpur India
1994 270 Mecca Saudi Arabia 2008 162 Himachal Pradesh India
1996 82 Guatemala City Guatemala 2008 147 Jodhpur India
1998 70 Kathmandu Nepal 2008 1 New York USA
1998 119 Mecca Saudi Arabia 2009 19 Abidjan Côte d’Ivoire

Table 1: A list with the main crowd accidents occurred in the recent years in the world.

However, microscopic approaches are computationally expensive, as each individual is
represented by an ordinary differential equation to be solved at each time step, and as
the number of individuals increases, so does the size of the system to be solved. On
the other hand, the macroscopic models are computationally less expensive because they
have fewer design details in terms of interaction among the pedestrians and between the
pedestrians and their environment. Thus, it is desirable to use macroscopic models if
a good model can be found satisfactorily to describe the pedestrian flows. In addition,
only the availability of good continuum models allows to state and possibly solve optimal
management problems. In fact, the aim of a good macroscopic model is to capture features
of real pedestrian flows and to reproduce them within an analytically treatable framework.

Figure 1: Number of papers having in the title the word “pedestrian” and published in
Elsevier or Springer journals versus year.

The understanding and modeling of the multi–scale and multi–physic phenomena in-
volved by crowd–structure interaction make a contribution from different research field
necessary to achieve general and conclusive results. For instance, the pedestrian walk-
ing behavior has been extensively studied in the field of biomechanics, while the crowd



46

modeling belongs to transportation, physics and applied mathematics research fields and
the structural design of efficient facilities for pedestrians to civil engineering. The conver-
gence of these multidisciplinary knowledges would represent a significant advance in the
comprehension of the phenomena involved in pedestrian flows.

Applications related to civil engineering and architecture have been among the main
practical motivations and final goals of these studies. A recent issue considered arises by
the onset of panic conditions, which substantially modify the crowd dynamics. Therefore,
the design of structures, such as stadia grandstands or public buildings, cannot be simply
based on normal crowd conditions. Indeed, crowd behavior in panic have to be taken
into account both for evacuation purpose and to prevent the structural collapse due to
congestion phenomena.

Another difficulty in modeling pedestrians movements derive from their behavior of
living systems. It is well understood, in the case of crowd, that human and animal
behavior follow specific strategies that modify laws of classical mechanics. This is a
specific characteristic of all living systems even in the case of low scales such as insects
or cells. Therefore, the coupling of living and mechanical systems have to be taken into
account in a comprehensive modeling approach. It is worth to recall the two main different
aspects which characterize these two type of systems. First, mechanical systems follow
rules of continuum mechanics according to conservation laws and are constant in time;
while living systems follow rules generated by their self–organized ability in responding the
contingent situations. Second, a mechanical system is represented by continuum models,
namely by a system with an infinite number of freedom; while a living system is a discrete
system, that is, a system with finite degrees of freedom.

Aim of this paper is to describe the actually unique macroscopic model capable to
predict the crowd behavior in panic situations and proposed by Colombo and Rosini
in [10] and investigated in [8, 9, 12, 13, 17, 29, 30, 32, 39, 43]. The paper develops in
five more sections. Section 2 is addressed to describe the real situations that we want to
model and to explain why the classical theory can not be useful. Section 3 is devoted to
define a proper non–classical Riemann solver, while Section 4 is devoted to analyze the
Cauchy problem. Applications of the model are discussed in Section 5, pointing out cases
in which the Braess’ paradox occurs. Finally, conclusions are discussed in the last section.

2 The Need of a Non–Classical Theory

The situation that we want to describe is the evacuation of pedestrians from a narrow
corridor or a bridge, mathematically represented by the interval [0, D]. It is assumed that
the escaping pedestrians have to pass through an exit, “door” sited at D. Before reaching
it, they have to go through an “obstacle” at, say, d whose role is to regulate the evcuation
process. The model should provide reasonable answers to the following questions:

Panic: When, where, how and why does panic arise?

Clog doors: When, how and why does the efficiency of the exit fall down?

Braess’ paradox: When, how and why is the obstacle helpful in the evacuation?
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Figure 2: Evacuation of a corridor [0, D] through the exit door at D. The obstacle at d
regulates the flow. At the initial time pedestrians are uniformly distributed in [a, b].

Obviously, the total number of pedestrians is conserved. We also assume that the average
velocity v of the pedestrians at time t and location x is a function of the crowd density
ρ(t, x), namely v = v(ρ), so that the crowd flow is f(ρ) = ρ v(ρ). Then, we are led to the
conservation law

∂tρ+ ∂xf(ρ) = 0 , (2.1)

analogous to the classical Lighthill–Whitham [27] and Richards [31] model.

One might be now lead to force pedestrian flow to follow the same description provided
in the case of vehicular traffic by the classical LWR model. This would amount first to
introduce also for pedestrians a speed law and a fundamental diagram, roughly speaking,
such as those in Figure 3. Then, the standard classical definitions of entropy solutions [5,

Figure 3: The speed law and the fundamental diagram used in the classical LWR [27, 31]
model for vehicle traffic.

14] could be applied. However, the resulting model would not be able to capture relevant
patterns that are typical of crowd dynamics and that are not present in vehicular traffic.
In particular, the resulting description of the behavior of pedestrians in panic situations
would be hardly acceptable. More than that, the very definition of panic would be difficult.

From the analytical point of view, we stress that classical solutions to (2.1) satisfy the
maximum principle, see [14, Theorem 6.2.2] or [26, Chapter IV, Theorem 2.1(a)]. This
elementary analytical result prevents any increase in the maximal density, in contrast with
a realistic description of panic, where a sort of overcompression arises in panic situation
and is often a cause of major accidents.

The model proposed by Colombo and Rosini in [10] relies on an extension of the
interval of the possible crowd densities: beyond the interval [0, R] of the standard densities
they introduced the panic states ]R ,R∗]. Therefore, the speed law and the fundamental
diagram proposed in in [10] are those here displayed in Figure 4. However, to avoid the
implications of the maximum principle, also the very definition of solution needs to be
suitably modified, as described below.
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Figure 4: The speed law and the fundamental diagram used in [10] to model pedestrian
flows.

3 The Riemann Problem

In this section we present the non–classical Riemann solver introduced in [10] and its main
properties. Recall first that by Riemann Problem for (2.1) we mean the particular Cauchy
problem for (2.1) with an initial datum that attains only two values. More precisely, the
Riemann Problem for (2.1) is







∂tρ+ ∂xf(ρ) = 0

ρ(0, x) =

{

ρl if x < 0
ρr if x > 0 .

(3.2)

We call Riemann Solver for (3.2) the mapR that associates to any pair of the initial states
ρl, ρr the solution ρ(t, x) =

(

R(ρl, ρr)
)

(t, x) to (3.2). As is well known, the Riemann
Solver contains all the physical information about the solutions to (2.1). Indeed, once R
is known, a constructive analytical procedure that leads to the solution of any Cauchy
problem (4.6) is available, as soon as ρ̄ has bounded variation, see for instance [6, 7, 20].

The definition of R proposed in [10] essentially relies on some qualitative properties
of the fundamental diagram in Figure 4. For completeness, we recall here the necessary
assumptions on the flux f , together with their physical meaning, as in [12].

(F.1) The Lipschitzeanity of f is a minimal regularity requirement to ensure the finite
speed of propagation of the waves:

f ∈ W1,∞ ([0, R∗] ; [0,+∞[) .

(F.2) The flow vanishes if and only if the density is either zero or maximal:

f(ρ) = 0 if and only if ρ ∈ {0, R∗} .

(F.3) Concavity is a standard technical assumption that avoids mixed waves:

the restrictions f∣
∣[0,R]

and f∣
∣[R,R∗]

are strictly concave.

(F.4) The maximal flow in standard situations exceeds that in panic:

max {f(ρ) : ρ ∈ ]0, R[} > max {f(ρ) : ρ ∈ ]R ,R∗[} .

(F.5) When entering the panic states, there is a small increase in the flow:

f has a local minimum at R .
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(F.6) The flow f(R), i.e. the flow at the standard maximal density, is very small:

f(R) < min {q′(R+)R,−q′(R−)(R∗ −R)} .

As a consequence of the above assumptions, there exist a unique RM ∈ ]0, R[ and a unique
R∗

M ∈ ]R ,R∗[ such that

f(RM) = max {f(ρ) : ρ ∈ ]0, R[} > f(R∗
M) = max {f(ρ) : ρ ∈ ]R ,R∗[} .

Furthermore, by (F.6), the line through the origin and (R, f(R)) intersects f = f(ρ)

Figure 5: The flow function f and notations.

at a point (R4, f(R4)) with R4 ∈ ]R,R∗[, while the line through (R∗, 0) and (R, f(R))
intersects f = f(ρ) at a point (R1, f(R1)) with R1 ∈ ]0, R[, see Figure 5, right.
It is of use to further introduce the auxiliary functions ψ and φ. First, see Figure 6,
let ψ(R) = R and, for ρ 6= R, let ψ(ρ) be such that the straight line through (ρ, f(ρ))
and (ψ(ρ), f (ψ(ρ))) is tangent to the graph of f at (ψ(ρ), f (ψ(ρ))). By (F.6), ψ is well

Figure 6: The function ψ: its geometrical meaning, left, and its graph, right.

defined and ψ(ρ) 6= R for all ρ ∈ [0, R∗] \ {R}. We assume also that there exists only
one couple (RT , R

∗
T ) ∈ ]RM , R[ × ]R∗

M , R
∗[ such that ψ(RT ) = R∗

T and ψ(R∗
T ) = RT , see

Figure 5, i.e.
(F.7) f(ψ(R∗)) < −q′(R∗) (R∗ − ψ(R∗)).

Then, the line through (RT , f(RT )) and (R∗
T , f(R

∗
T )) is the unique tangent to f = f(ρ) in

two (distinct) points. These assumptions imply that ψ is increasing in [0, RT [ ∪ ]R∗
T , R

∗]
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and decreasing in ]RT , R
∗
T [ while ψ

′(RT ) = ψ′(R∗
T ) = 0, see Figure 6, right. Moreover,

RT < ψ(R∗) < R < ψ(0) < R∗
T .

Finally, we concentrate our attention on the cases in which:
(F.8) R∗

T < R4 < R∗ and 0 < R1 < RT .
(F.9) [ρ 7→ ψ(ρ)− ρ] is non–increasing in [0, R].

Let ρ̄ ∈ [0, RT [, then by (F.6) the line through (ρ̄, f(ρ̄)) and (ψ(ρ̄), f(ψ(ρ̄))) has a further
intersection with the graph of f , which we call (φ (ρ̄), f(φ (ρ̄))).

Following [10, 12], we now define a non–classical Riemann Solver suited to the descrip-
tion of crowd dynamics, yielding physically reasonable solutions to all Riemann problems
of the type (3.2). More precisely, for any pair (ρl, ρr) ∈ [0, R∗]2, we denote by R(ρl, ρr)
the self similar weak solution to the Riemann problem (3.2) computed at time, say, t = 1.
Introduce two thresholds s and ∆s such that

s > 0 , ∆s > 0 , s < RM and R > s+∆s ≥ φ(s) > RT > R−∆s . (3.3)

The solution to Riemann problems with data in [0, R∗] are selected through the following

Figure 7: Left: The Riemann solver selected by (R.1)–(R.4). Here, NR↓ indicates
that R(ρl, ρr) is a non–classical shock followed by a decreasing rarefaction. Right: The
weighted total variation TVw. The notation 1W means that the first wave has weight 1
and the second wave has weight W .

conditions, see Figure 7, left.

(R.1) If ρl, ρr ∈ [0, R], then R(ρl, ρr) selects the classical solution unless

ρl > s and ρr − ρl > ∆s .

In this case, R(ρl, ρr) consists of a non–classical shock between ρl and ψ(ρl), followed
by the classical solution between ψ(ρl) and ρr.

(R.2) If ρr < ρl, then R(ρl, ρr) is the classical solution.

(R.3) If R ≤ ρl < ρr or ρl < R < ρr and the segment between (ρl, f(ρl)) and (ρr, f(ρr))
does not intersect f = f(ρ), then the solution is a shock between ρl and ρr.
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(R.4) If ρl < R < ρr and the segment between (ρl, f(ρl)) and (ρr, f(ρr)) intersects
f = f(ρ), then R(ρl, ρr) consists of a non–classical shock between ρl and a panic
state followed by a possibly null classical wave. More precisely,

ρr ∈
]

R ,ψ(ρl)
[

: R(ρl, ρr) consists of a non–classical shock between ρl and ψ(ρl),
followed by a decreasing rarefaction between ψ(ρl) and ρr;

ρr ∈
[

ψ(ρl), R∗
[

: R(ρl, ρr) consists of a single non–classical shock.

We recall here the main result of [10, Theorem 2.1] concerning the solution to Riemann
problems. To state it, the following subsets of the square [0, R∗]2 are of use, see Figure 7.

CN =
{

(ρl, ρr) ∈ [0, R∗]2 : ρl ≥ ρr ≥ R
}

NC =
{

(ρl, ρr) ∈ [0, R]2 : ρl > s and ρr − ρl > ∆s
}

C = ([0, R∗]× [0, R[) ∪ CN \ NC

N = ([0, R∗]× ]R ,R∗]) ∪ NC \ CN

Theorem 3.1 ([10, Theorem 2.1], [32, Theorem 2.1, Proposition 3.1]). Let f : [0, R∗] →
[0,+∞[ satisfy Assumptions (F.1)–(F.8). Choose thresholds s and ∆s such that (3.3)
holds. Then, there exists a unique Riemann solver R : [0, R∗]2 → BV(R) satisfying (R.1)–
(R.4) and such that ρ(t, x) =

(

R(ρl, ρr)
)

(x/t) is a weak solution to (3.2). Moreover,

• R is consistent in C̊ and separately, in N ,

• R is L1
loc-continuous in C̊, in N and also along the segment ρl = ρr for ρl ∈ ]R ,R∗].

Recall that a Riemann Solver R̃ is consistent if the following two conditions hold.

(C.1)
R̃(ul, um)(x̄) = um

R̃(um, ur)(x̄) = um

}

⇒ R̃(ul, ur) =

{

R̃(ul, um) if x < x̄

R̃(um, ur) if x ≥ x̄

(C.2) R̃(ul, ur)(x̄) = um ⇒















R̃(ul, um) =

{

R̃(ul, ur) if x ≤ x̄
um if x > x̄

R̃(um, ur) =

{

um if x < x̄

R̃(ul, ur) if x ≥ x̄

Essentially, (C.1) states that whenever two solutions to two Riemann problems can be
placed side by side, then their juxtaposition is again a solution to a Riemann problem,
see Figure 8. (C.2) is the viceversa. Both these properties are enjoyed by the standard
Lax solver. Moreover, if the Riemann solver R̃ generates a standard Riemann semigroup,
then R̃ needs to satisfy (C.1).

Proposition 3.2 ([32, Proposition 3.2]). The Riemann solver R satisfies (C.2) but not

(C.1) in [0, R∗]2.

Proof. In order to prove that R satisfies (C.2) in [0, R∗]2 it is sufficient to consider the
following two cases.

• ρl < R < ρr < ρm < ψ(ρl)
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Figure 8: Consistency of a Riemann solver.

• s < ρl < ρr −∆s, ρr < R and ψ(ρr) < ρm < ψ(ρl)

Easily, the reader can check that in both cases (C.2) is satisfied. Finally, if ρl, ρm, ρr ∈
[0, R∗]2 satisfy one of the following conditions, then (C.1) is not satisfied.

• ρl, ρm ∈ [0, R[, R(ρl, ρm) = S↑, ρr > ψ(ρl) and the line r(ρl, ρm) has slope less than
the line r(ρl, ρr)

• ρl, ρm ∈ [0, R[, R(ρl, ρm) = S↑, R < ρr < ψ(ρl) and r(ρl, ρm) has slope less than the
line r(ρl, ψ(ρl))

• ρl, ρr ∈ [0, R[, R(ρl, ρr) = S↑ and ψ(ρr) < ρm = ψ(ρl)

Proposition 3.3 ([32, Proposition 3.3]). R is not L1
loc-continuous in [0, R∗]2.

Proof. Fix ǫ > 0. If ρl, ρr1, ρ
r
2 ∈ [0, R∗]2 with ρr2 − ρr1 < ǫ and satisfy one of the following

conditions, then lim
ǫ→0+

∥

∥R(ρl, ρr2)−R(ρl, ρr1)
∥

∥

L1
6= 0.

• ρl ≤ s < ρr1 < R < ρr2

• s < ρl < s+∆s < ρr1 < ρl + s < ρr2 < R

• s+∆s ≤ ρl < ρr1 < R < ρr2

Finally, if ρr, ρl1, ρ
l
2 ∈ [0, R∗]2 with ρl2 − ρl1 < ǫ satisfy one of the following conditions,

then lim
ǫ→0+

∥

∥R(ρl2, ρ
r)−R(ρl1, ρ

r)
∥

∥

L1
6= 0

• ρl1 < s ≤ ρl2 < ρr −∆s and ρr < R

• ρl1 < ρr −∆s ≤ ρl2 < R

For any fixed constant W > 1, let the weighted total variation TVw : BV(R;R) →
[0,+∞[ defined as it follows, see Figure 7, right. Let R(ρl, ρr) be a single wave, then

• TVw(R(ρl, ρr)) =
∣

∣ρr − ρl
∣

∣ if R(ρl, ρr) is a classical or non–classical shock with
ρr ∈ ]R,R∗];

• TVw(R(ρl, ρr)) = W ·
∣

∣ρr − ρl
∣

∣ otherwise, i.e. if ρr ≤ R or ρr < ρl.
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Proposition 3.4 ([32, Proposition 5.1]). Assume that

φ(0)

ψ(0)
≤

∆s

ψ(s)− s
, (3.4)

and consider a constant W such that

W > 1 and
φ(0)

ψ(0)
≤
W + 1

2W
≤

∆s

ψ(s)− s
. (3.5)

Then, TVw does not increase after any interaction.

The theory of classical Riemann solver, see for instance [5, 14], ensures that, in the present
scalar case, the total variation of the solution does not increase after any interaction among
classical waves. Thus, the proof follows by the analysis of all the possible wave interactions
in which non–classical shocks are involved, see [32, Section 5].

4 The Cauchy Problem

In this section we prove an existence results for the Cauchy problem

{

∂tρ+ ∂xf(ρ) = 0
ρ(0, x) = ρ̄(x)

(4.6)

and prove that R is also not L1-continuous in [0, R∗]2.

Theorem 4.1 ([12, Theorem 3.4]). Let f satisfy (F.1)–(F.9), s,∆s satisfy (3.3) and as-

sume that there exists aW satisfying (3.5). For any initial datum ρ̄ ∈ (L1∩BV) (R; [0, R∗]),
the Cauchy problem (4.6) admits a non–classical weak solution ρ = ρ(t, x) generated by

the non–classical Riemann solver R and defined for all t ∈ R+. Moreover:

TV (ρ(t)) ≤ W · TV(ρ̄) , for all t ∈ R+ . (4.7)

Proof. The proof is based on the wave front tracking method [6, 7, 20]. Here we give a
sketch for the proof, deferring the details to [12]. As a first step, we fix a mesh Mn =

Figure 9: Approximation of the initial data, left, and of the flux, right.

{i2−nR∗ : i = 0, 1, . . . , 2n} ∪ {RM , RT , R,R
∗
M , R

∗
T}; introduce an approximation fn in
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the set of piecewise linear function such that fn(ρ) = f(ρ) for all ρ ∈ Mn; introduce
an approximation ρ̄n of the initial data ρ̄ in the set of piecewise constant function with
compact support and with values in Mn, such that TV(ρ̄n) ≤ TV(ρ̄) and ρ̄n → ρ̄ in L1,
see Figure 10, left. Then, we obtain the following approximate Cauchy problem.

{

∂tρn + ∂xfn(ρn) = 0
ρn(0, x) = ρ̄n(x)

(4.8)

Solving the Riemann problems associated to each jump of ρ̄n and gluing together all
these solutions, we obtain the exact solution to (4.8) up to the first time of interaction,
see Figure ??. Solving the corresponding Riemann problem at the first interaction point,
it is possible to continue with the construction of the approximating solution ρn. This

Figure 10: Left: First step for the construction of the solution to (4.8). Right: An example
of accumulation point.

procedure can be iterated if there are no accumulation points, see Figure 10, right. By
Proposition 3.4, we know that this is not our case and therefore this procedure gives an
approximating solution ρn for all times. Finally, up to a subsequence, by Helly’s theorem
the approximating solutions ρn converge to a function ρ, which is a solution to (4.6) and
satisfies (4.7).

Proposition 4.2. R is not L1-continuous in [0, R∗]2.

Proof. Let n ∈ N and consider the following Cauchy problems.















∂tρ+ ∂xf(ρ) = 0

ρ(0, x) =







0 x ∈ ]−∞, 0[

R x ∈ [0,+∞[

,















∂tρn + ∂xf(ρn) = 0

ρn(0, x) =







0 x ∈ ]−∞, 0[
R + 1/n x ∈ [0, 1]
R x ∈ ]1,+∞[

Easy computations, see Figure 11, show that for all t > 0

lim
n→∞

‖ρ(0)− ρn(0)‖L1(R;[0,R∗]) = 0 and lim
n→∞

‖ρ(t)− ρn(t)‖L1(R;[0,R∗]) 6= 0 ,

completing the proof.
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Figure 11: Left: Construction of the solutions ρ and ρn to the Cauchy problems considered
in the proof of Proposition 4.2. Right, from top to bottom; first diagram, representation
of ρ in the (x, t)-plane. Observe that from the origin starts a shock between the densities
0 and R. Second diagram, representation of ρn in the (x, t)-plane. Observe that from
the origin starts a non–classical shock between the densities 0 and ψ(0) followed by a
decreasing rarefaction between the densities ψ(0) and R + 1/n, while from 1 starts a
rarefaction between the densities R+1/n and R. Third diagram, representation of ρ and
of the limit ρ∞ in the (x, ρ)-plane.

5 Application

In this section we apply the model described above to the evacuation of a narrow corridor
[0, D]. We assume that, at the initial time t = 0, the crowd is uniformly distributed
in [a, b] ⊂ [0, D], with a relatively high density ρ̄ ∈ [RM , R]. Consider two doors in
d and D, b < d ≤ D, with maximal loads p, P : [0, R∗] → [0, f(RM )], respectively.
High densities at the doors affect on their efficiency, and therefore proper choices of the
functions p and P are p = p1 χ[0,R] + p2 χ]R,R∗] and P = P1 χ[0,R] + P2 χ]R,R∗], with
P2 < p2 < P1 < p1. Roughly speaking, the first door is larger than the second one,
p > P , and the high densities of people close to the doors clog them, p1 > p2 and
P1 > P2. Let 0 < ρ′D < ρ′d < ρ′′d < ρ′′D < R be such that f(ρ′D) = f(ρ′′D) = P1 and
f(ρ′d) = f(ρ′′d) = p1. Mathematically, this situation is described by the following Cauchy
problem with constraints.















∂tρ+ ∂xf(ρ) = 0 for t ∈ R+, x ∈ [0, D]
ρ(0, x) = ρ̄ χ[a,b](x) for x ∈ [0, D]
f (ρ(t, d)) ≤ p (ρ(t, d)) for t ∈ R+

f (ρ(t,D)) ≤ P (ρ(t,D)) for t ∈ R+

(5.9)

By applying the wave front tracking method, and solving a certain number of Riemann
problems, it is possible to construct a solution of (5.9), see Figure 12, left. Note that
pedestrians start exiting through the first door at time tI = (d − b)/q′(0) and through
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Figure 12: Left, the solution to (5.9), right, the solution to (5.9) without the third equa-
tion.

the second door at time tA = (D− b)/q′(0). At time tB, the initial shock and rarefaction
start to interact, yielding the shock S1, see Figure 12, left. Due to the interaction, S1

accelerates while the state to its right decreases.
For certain initial conditions, such as ρ̄/(d− b) sufficiently large, the outflow through

the first door reach its maximal value at time tL = (d − b)/q′(ρ′d). A backward shock
with support S5 is formed at L, it interacts with the rarefaction exiting b and accelerates
backwards, so that it is bent as in Figure 12, left. Along the right side of S5 the density is
constant and equal to ρ′′d, while on the left side it increases. At time tC = (D− b)/q′(ρ′D)
the maximal outflow through the second door is reached and appears a backward shock
S2 related to a queue started from the second door. S5 meets S1 in N and starts a shock
S8 which reaches the door in P . Therefore, at time tP all the people have passed through
the first door. In Q the shocks started from P and M meet and starts the final shock S10,
which meets the second door in R and tR represents the evacuation time T (d).

In Figure 12, right, the same problem (5.9) is considered, but the first door is removed,
i.e. d ≡ D. Remarkably, in this particular situation, the evacuation time without the first
door is larger than the evacuation time with the first door. The detailed construction of
these solutions can be found in [11, Section 4.2].

In particular, changing the position of the first door, namely, letting varying d in
[b,D], we obtain the graph for the evacuation time represented in Figure 13. Note that
the darker regions in Figure 12, right, represent where the crowd density attains panic
values, i.e. ρ ∈ ]R,R∗]. The presence of the obstacle avoids the density to reach these
high values, thus allowing for a faster evacuation of the corridor. Remarkably, there is
an interval of values of d such that the presence of the first door helps for the evacuation
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Figure 13: The horizontal dotted line is the evacuation time without the first door. The
solid line is the evacuation time, T , as a function of the position of the first door, d.

time, showing that the model properly describe the Braess’ paradox for pedestrian flows.
Furthermore, it is also clear that the presence of a first door too close to the second one
does not have any effect on the evacuation time.

6 Conclusions

We presented the model proposed in [10] and some of its analytical properties. This model
can be used to describe real situations, such as a crowd evacuating a corridor. Numerical
integrations are possible, allowing a detailed description of the phenomena. Furthermore,
the time necessary for people to exit the corridor can be computed.

Reasonable qualitative behaviors of the solutions are described. In particular, the
model presented accounts for the possible decrease in the evacuation time thanks to
the careful insertion of an obstacle at a well chosen position in front of the exit. This
phenomenon, an analog of Braess’ paradox [4], is clearly non generic.

Possible criticisms to the model are the fact that it describes only one dimensional
movements and the lack of L1–continuous dependence of the solutions from the initial
data. Anyway, it should be reminded that the theory for non–classical shocks and the wave
front tracking method are both developed only for the one dimensional case. Secondly,
the non–continuous dependence of the solution from the data is due to the presence of
the two thresholds s and ∆s.
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